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Abstract 
In this paper described is the basic concept of the Guideline for Post-earthquake Damage Assessment of 

RC buildings, revised in 2001, in Japan. This paper discusses the damage rating procedures based on the 
residual seismic capacity index R, the ratio of residual seismic capacity to the original capacity, that is 
consistent with the Japanese Standard for Seismic Evaluation of Existing RC Buildings, and their validity 
through calibration with observed damage due to the 1995 Hyogoken-Nambu (Kobe) earthquake. Good 
agreement between the residual seismic capacity ratio and damage levels was observed. Moreover, seismic 
response analyses of SDF systems were carried out and it is shown that the intensity of ultimate ground 
motion for a damaged RC building structure can be evaluated conservatively based on the R-index in the 
Guideline. 
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1. Introduction 

To restore an earthquake damaged community as 
quickly as possible, well-prepared reconstruction 
strategy is most essential. When an earthquake strikes 
a community and destructive damage to buildings 
occurs, quick damage inspections are needed to 
identify which buildings are safe and which are not to 
aftershocks. However, since such quick inspections are 
performed within a restricted short period of time, the 
results may be inevitably coarse. In the next stage 
following the quick inspections, damage assessment 
should be more precisely and quantitatively performed, 
and then technically and economically sound solution 
should be applied to damaged buildings, if 
rehabilitation is necessary. To this end, a technical 
guide that may help engineers find appropriate actions 
required in a damaged building is needed, and the 
Guideline for Post-earthquake Damage Evaluation and 
Rehabilitation1) originally developed in 1991 was 
revised in 2001 considering damaging earthquake 
experience in Japan. 

The Guideline describes damage evaluation basis 
and rehabilitation techniques for three typical 
structural systems, i.e., reinforced concrete, steel, and 
wooden buildings. Presented in this paper are outline 
and basic concept of the Guideline for reinforced 
concrete buildings. This paper discusses the damage 

rating procedures based on the residual seismic 
capacity index that is consistent with the Japanese 
Standard for Seismic Evaluation of Existing RC 
Buildings2), and their validity through calibration with 
observed damage due to the 1995 Hyogoken-Nambu 
(Kobe) earthquake and seismic response analyses of 
SDF systems. 
 
2. Post-earthquake Damage Evaluation 
2.1 Residual seismic capacity ratio, R 

In the Damage Evaluation Guideline, damage level 
of a building structure is evaluated by residual seismic 
capacity ratio R, which is defined as the ratio of 
post-earthquake seismic capacity to the original 
capacity. Seismic Evaluation Standard2), which is most 
widely applied to existing reinforced concrete 
buildings in Japan, is employed to evaluate the seismic 
capacity of a building. In the Seismic Evaluation 
Standard, seismic performance of a building is 
expressed by the Is-index. The basic concept of 
Is–index appears in APPENDIX. Residual seismic 
capacity ratio R is given by Eq.(1). 

 

100×=
Is
Is

R D  (%)   (1) 

where, Is: original seismic performance index,  
DIs: post-earthquake seismic performance index 
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2.2 Estimation of post-earthquake seismic capacity 
The original seismic performance Is-index of a 

building can be calculated from lateral resistance and 
deformation ductility of structural members in 
accordance with the Seismic Evaluation Standard2). On 
the other hand, residual resistance and deformation 
ductility in the damaged structural members are 
needed to be evaluated in order to quantify 
post-earthquake seismic performance index DIs. 
Idealized lateral force-displacement relationships for 
ductile and brittle columns are shown in Figure 1 with 
damage class defined in Table1. Table 1 shows 
damage classification of structural members in the 
Post-earthquake Damage Evaluation Guideline1). 

In the Seismic Evaluation Standard, most 
fundamental component for Is-index is E0-index, 
which is basic structural seismic capacity index 
calculated from the product of strength index (C), and 
ductility index (F). Accordingly, deterioration of 
seismic capacity was estimated by energy dissipation 
capacity in lateral force- displacement curve of each 
member, as shown in Figure 2. Seismic capacity 
reduction factor η is defined by Eq.(2). 

 

t

r

E
E

=η     (2) 

where, dE : dissipated energy,  
rE : residual absorbable energy,  
tE : entire absorbable energy ( rdt EEE += ). 

 
The Post-earthquake Damage Evaluation Guideline 

recommends values for seismic capacity reduction 
factor η shown in Table 2 based on the author’s 
experimental and analytical results3,4). 
 
Table 1. Damage Class For RC Structural Members1) 
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Table 2. seismic capacity reduction factor η 
Damage 

Class Ductile Column Brittle Column Wall 

I 0.95 0.95 

II 0.75 0.6 

III 0.5 0.3 

IV 0.1 0 

V 0 0 

 
2.3 Approximation of lateral strength and ductility 
in members 

One of main purposes of damage level classification 
is to grasp the residual seismic capacity as soon as 
possible just after the earthquake, in order to access the 
safety of the damaged building for aftershocks and to 
judge the necessity for repair and restoration. For this 
purpose, need of detailed and complicated procedure, 
i.e. calculation of strength and ductility of structural 
member based on material and sectional properties, 

Damage 
Class Observed Damage on Structural Members 

I Some cracks are found. 
Crack width is smaller than 0.2 mm. 

II Cracks of 0.2 - 1 mm wide are found. 

III Heavy cracks of 1 - 2 mm wide are found. Some 
spalling of concrete is observed. 

IV 
Many heavy cracks are found. Crack width is larger 
than 2 mm. Reinforcing bars are exposed due to 
spalling of the covering concrete. 

V 

Buckling of reinforcement, crushing of concrete and 
vertical deformation of columns and/or shear walls 
are found. Side-sway, subsidence of upper floors, 
and/or fracture of reinforcing bars are observed in 
some cases. 
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reinforcing details etc, is inconvenient. Accordingly, a 
simplified method was developed by approximated 
lateral strength and ductility. Following assumptions 
were employed in the approximation. 

(1) Vertical members are categorized into five 
members and normalized lateral strengths C of the 
five categories are assumed as shown in Table 3. 
These values were evaluated from cross section area 
and average shear stress for typical low-rise reinforced 
concrete buildings in Japan. 

(2) Ductility factor F of each vertical member is 
assumed 1.0. 

(3) The original and residual capacities of a building 
are estimated by the summation of the original and 
residual capacities of vertical members in the damaged 
story. Therefore residual seismic capacity ratio R is 
calculated by Eq.(3). 

∑
∑=

FC

FC
R

η
    (3) 

 
3. Application to Buildings Damaged due to 
Recent Earthquakes in Japan 

The proposed damage evaluation method was 
applied to reinforced concrete buildings damaged due 
to recent earthquakes such as 1995 Hyogo-ken-nambu 
Earthquake. Objective buildings include 10 moment 
frame structures and 2 wall-frame structures5).  

Approximated value of Residual seismic capacity 
ratio R1 was compared with accurate value R2, which 
was evaluated from calculated lateral strength and 
ductility based on material and sectional properties, 
reinforcing details, in Figure 3. From the figure, 
approximated value R1 agrees with accurate value R2 
not only for frame structure but also for wall-frame 
structure.  

The residual seismic capacity ratio R of about 150 
reinforced concrete school buildings, including above 
mentioned buildings, are shown in Figure 4 together 
with damage levels estimated by the engineering 
judgment of investigators. As can be seen in the figure, 
no significant difference between damage levels and 
residual seismic capacity ratio R can be found although 
near the border some opposite results are observed.  

The horizontal lines in Figure 4 are borders between 
damage levels proposed in the Damage Evaluation 
Guideline1).  

[slight]  R≧95 (%) 
[minor] 80≧R＜95 (%) 
[moderate] 60≧R＜80 (%)  
[severe] R＜60 (%) 
[collapse] 0≈R  
The border between slight and minor damage was 

set R=95% to harmonize “slight damage” to the 
serviceability limit state. Almost of severely damaged 
and about 1/3 of moderately damaged buildings were 
demolished and rebuilt after the earthquake according 
to the report of Hyogo Prefecture. Therefore, if the 
border between moderate and severe damage was set 
R=60%, “moderate damage” may correspond to the 
reparability limit state. 
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Fig. 3. Comparison R1 and R2 
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Fig. 4. Residual seismic capacity ratio R and damage level 
classification 

Table 3. Categories of vertical members and normalized lateral strengths C  

 Column Wall without 
boundary column Column with side wall Wall with boundary columns 

 
Section 

 

60cm 

60cm

 15cm

240cm 

 15cm

240cm

 15cm 

480cm 
Shear stress τ 1 N/mm2 1 N/mm2 2 N/mm2 3 N/mm2 

C  1 1 2 6 
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4. Calibration of R-Index with Seismic 
Response of SDF Systems 
4.1 Outline of Analysis 

In the Damage Evaluation Guideline1), the seismic 
capacity reduction factor η was defined based on 
absorbable energy in a structural member, which was 
evaluated from an idealized monotonic load-deflection 
curve as shown in Figure 2 and accordingly the effect 
of cyclic behavior under seismic vibration was not 
taken into account. Therefore nonlinear seismic 
response analyses of a single-degree-of-freedom (SDF) 
system were carried out and validity of the residual 
seismic capacity ratio R in the Guideline was 
investigated through comparison of responses for 
damage and undamaged SDF systems.  

Residual seismic capacity ratio based on seismic 
response, Rdyn, was defined by the ratio of the intensity 
of ultimate ground motion after damage to that before 
an earthquake (Figure 5). The ultimate ground motion 
was defined as a ground motion necessary to induce 
ultimate limit state in a building and the building 
would collapse. 

 

0d

di
dyn A

A
R =      (9) 

where, Ad0: intensity of ultimate ground motion 
before an earthquake (damage class 0) 
Adi: intensity of ultimate ground motion after 
damage (damage class “i”) 
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Fig. 5. Residual seismic capacity ratio based on seismic 
response Rdyn 

 
4.2 Analytical Model 

A new model was used to represent the hysteresis 
rule of the SDF systems; i.e., Takeda-pinching model 
was modified in order that shear resistance 
deterioration occurs after some plastic displacement 
(Figure 6). Yield resistance Fy was chosen to be 0.3 
times the gravity load. Cracking resistance Fc was 
one-third the yielding resistance Fy. Initial stiffness Ke 
was designed so that the elastic vibration periods T 
were 0.1, 0.2, 0.3, 0.4, 0.5 and 0.6sec. The secant 
stiffness at the yielding point, Ky, and the post-yielding 
stiffness, Ku, were 30 and 1 percent of the initial 
stiffness, respectively.  
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Figure 6: Hysteretic model 
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Fig. 7. Envelope curve and damage class 

 
Three systems with different ultimate ductility µmax 

were assumed as shown in Figure 7 based on authors’ 
column test results6). Figure 7(a) represents a brittle 
structure of which ultimate deflection is 2 times 
yielding deflection (µmax =2). Figure 7(b) and (c) 
represent ductile structures with µmax =3 and 5, 
respectively. The relationship between deflection and 
damage class was determined in accordance with 
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authors’ experimental results as shown in Figure 7. 
The yield resistance Fy started to deteriorate as shown 
in Figure 7 after deflection reached to the region of 
the damage class IV. 

 
4.3 Method of Analyses 

Four observed earthquake accelograms were used: 
the NS component of the 1940 El Centro record (ELC), 
the NS component of the 1978 Tohoku University 
(TOH), the NS component of the 1995 JMA Kobe 
(KOB), and the N30W component of the 1995 Fukiai 
recode (FKI). Moreover, two simulated ground motion 
with same elastic response spectra and different time 
duration was used. Acceleration time history and 
acceleration response spectra are shown in Figure 8 
and Figure 9, respectively. The design acceleration 
spectrum in the Japanese seismic design provision was 
used as target spectrum and Jennings-type envelope 
curve was assumed in order to generate the waves. A 
simulate wave with short time duration is called 
Wave-S and with long time duration Wave-L. The 
equation of motion was solved numerically using 
Newmark-β method with β = 1/4. 
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Fig. 8. Time history of simulated ground motions 
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Fig. 9. Acceleration spectrum of simulated ground motions 

 
4.4 Analytical Results 

To investigate the relationship between maximum 
displacement response and intensity of the ultimate 
ground motion, parametric analyses were run under the 
six ground motions with different amplification factors. 

The results for a system with µ max =3 and T =0.2 sec. 
under ELC and Wave-S are shown in Figure 10. Thick 
lines indicate results before damage. Ductility factor µ 
increases with increase in the amplification factor. The 
lower bound of amplification factor for damage class 
V is assumed to correspond to intensity of ground 
motion which induce failure of the structure, and is 
defined as the intensity of ultimate ground motion 
before damage, Ad0. Ultimate amplification factor for 
damaged structure, Adi, was estimated from analytical 
results for systems damaged by pre-input. For example, 
first ductility factor µ =2 (damage class III) was 
induced to a system using amplified ground motion, 
and then additional ground motion was inputted 
continuously to find the ultimate amplification factors 
for damage class III, Ad3, by parametric studies 
(Figure 11). 0 cm/s2 acceleration was inputted for 5 
seconds between the pre-inout and second ground 
motion in order to reduce vibration due to the 
pre-input. 
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Fig. 10. Amplification factor vs. maximum ductility factor 
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Fig 11. Response time history for a system damaged by 
pre-input  

 
The residual capacity ratio index Rdyn, obtained from 

analyses of systems with different initial period T 
under the six ground motions, was shown in Figure 12. 
The reduction factor η in the Guideline (Table 2), 
which is correspond to the R value for a SDF system, 
was also shown in the figure. As can be seen from the 
figure, Rdyn values based on analyses are ranging rather 
widely and R-index in the Guideline generally 
corresponds to their lower bound, although some of 
analytical results Rdyn–index for damage class I are 
lower than values in the Guideline. Therefore, The 
Guideline may give conservative estimation of the 
intensity of ultimate ground motion for a RC building 
structure damaged due to earthquake.  
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Fig. 12. Comparison of residual capacity ratio Rdyn with values in the Guideline 
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5. Concluding Remarks 
In this paper, the basic concept and procedure of 

new Guideline for post-earthquake damage assessment 
of RC buildings in Japan were presented. The concept 
and supporting data of the residual seismic capacity 
ratio R-index, which is assumed to represent 
post-earthquake damage of a building structure, were 
discussed. Good agreement between the residual 
seismic capacity ratio R and damage levels classified 
by engineering judgment was observed for relatively 
low-rise buildings damaged due to 1995 Hyogo-ken 
Nambu Earthquake. Moreover, the validity of the 
R-index was examined through calibration with 
seismic response analyses of SDF systems. As 
discussed herein, the intensity of ultimate ground 
motion for a damaged RC building structure can be 
evaluated conservatively based on the R-index in the 
Guideline. Much work is, however, necessary to 
improve the accuracy of the post-earthquake damage 
evaluation, because available data related to residual 
seismic capacity are still few. 

 
Appendix 
-Basic Concept of Japanese Standard for Seismic 
Evaluation2)- 

 
The Standard consists of three different level 

procedures; first, second and third level procedures. 
The first level procedure is simplest but most 
conservative since only the sectional areas of columns 
and walls and concrete strength are considered to 
calculate the strength, and the inelastic deformability is 
neglected. In the second and third level procedures, 
ultimate lateral load carrying capacity of vertical 
members or frames are evaluated using material and 
sectional properties together with reinforcing details 
based on the field inspections and structural drawings. 

 
In the Standard, the seismic performance index of a 

building is expressed by the Is-Index for each story 
and each direction, as shown in Eq. (7)  

 
TSEIs D ××= 0     (7)  

where, E0 : basic structural seismic capacity index 
calculated from the product of strength index (C), 
ductility index (F), and story index (φ ) at each story 
and each direction when a story or building reaches at 
the ultimate limit state due to lateral force, i.e., 

FCE ××= φ0 .  
C : index of story lateral strength, calculated from 

the ultimate story shear in terms of story shear 
coefficient.  

F : index of ductility, calculated from the ultimate 
deformation capacity normalized by the story drift of 
1/250 when a standard size column is assumed to 
failed in shear. F is dependent on the failure mode of 
structural member and their sectional properties such 
as bar arrangement, member proportion, 
shear-to-flexural-strength ratio etc. . F is assumed to 
vary from 1.27 to 3.2 for ductile column, 1.0 for brittle 
column and 0.8 for extremely brittle short column.  
φ : index of story shear distribution during 

earthquake, estimated by the inverse of design story 
shear coefficient distribution normalized by base shear 

coefficient. A simple formula of 
in

n
+
+

=
1φ  is basically 

employed for the i-th story level of an n-storied 
building by assuming straight mode and uniform mass 
distribution.  

SD : factor to modify E0-Index due to stiffness 
discontinuity along stories, eccentric distribution of 
stiffness in plan, irregularity and/or complexity of 
structural configuration, basically ranging from 0.4 
to1.0 

T : reduction factor to allow for the deterioration of 
strength and ductility due to age after construction, fire 
and/or uneven settlement of foundation, ranging from 
0.5 to 1.0. 
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