実大5層RC造壁付き架構試験体を対象とした静的非線形増分解析

その1 実験概要および解析概要

壁付き架構	モデル化	スラブ有効幅	
危険断面位置	剛域	耐力低下	

1. はじめに

近年,建物の地震後の継続使用性能を高める目的で RC 壁部材の構造利用が広く研究されている。筆者らも当該壁 部材の活用に関する検討を実施してきているが,部材応答 を評価するための壁付き架構のモデル化手法についてまだ 十分な知見を得られていない。そこで本稿は,実大5層 RC 造壁付き架構試験体2体¹⁾²⁾(以下2014年試験体,2015 年試験体)を対象に,危険断面位置・スラブ有効幅・部材 の耐力低下を解析変数とする静的非線形増分解析を実施し, 建物レベルの挙動(ベースシア代表変形角関係,層間変形 角分布)と部材レベルの挙動(塑性ヒンジ分布,部材角) を適切に評価できるモデル化手法を検討する。

2. 実験概要 1) 2)

2.1 試験体概要

試験体は図1に示す桁行方向(加力面内方向)2スパン, 張間方向(加力面外方向)1スパンの立体5層架構である。 縮尺は実寸大で,柱断面は700mm角,梁断面は500× 700mm,スラブおよび壁厚さは200mmである。2014年 試験体は柱梁剛節架構に袖壁が,2015年試験体は袖壁・腰 壁・垂れ壁が取付く試験体である。

2.2 加力計画

加力は南北方向を面内とする正負交番繰り返し載荷とし、 4層とR層に対し水平力が2:1となるよう載荷している。

2.3 計測計画

各層の水平変形角および代表変形角 Rr (R 層梁芯高さの 水平変位/スタブ天端から R 層梁芯高さまでの距離)を,各 層の梁芯位置に設置した水平変位計により計測する。部材 の局所変形は、1 層の柱および2 層の梁を対象に、曲げ・ せん断変形を計測する。ひずみの計測は、柱梁接合部付近 の主筋と加力面内方向のスラブ筋に対して行う。損傷の計 測は、各層の壁付き柱・梁に対し、クラックスケールを用 いて部材ごとの最大残留ひび割れ幅を計測する。

2.4 実験結果

ベースシア代表変形角関係を図2に示す。2014年試験体は Rr=1.35%付近にてスリットで分離された方立壁と腰壁 が接触したため、以降の変形角は分析の対象外とした。分 析対象範囲における最大ベースシアは約4400kN であった。 2015年試験体は Rr=0.5%付近で最大ベースシアが約 8000kNを迎え、その後 Rr=1%付近で1~3層の壁端部が 圧壊したことで架構の耐力低下が生じた。その際、開口隅 角部では図3右のように腰壁・垂れ壁端部筋が座屈し、か

Non-linear Pushover Analysis for Full Scale Five Story Reinforced Concrete Resilient Buildings Utilizing Walls Part1; Outline of Experimental Test and Analysis Method

正会員	○向井	智久*1	正会員	川越	悠馬 ^{*2}
同	衣笠	秀行*2	同	河野	進*3
同	前田	匡樹*4	同	谷昌	∎典*5
同	渡邊	秀和*1	同	坂下	雅信*6

ぶりコンクリートが押し出され剥落が生じた。これは同図 左の断面図に示すように、当該部分の腰壁・垂れ壁端部筋 が袖壁端部筋よりかぶり側に配筋され、壁端部筋に対する 拘束効果が得られなかったためと考えられる。続いて層間 変形角分布と材端主筋の降伏分布を図4,5に示す。2014 年試験体は2,3層の変形がやや大きいが概ね全体崩壊形 (3,5層の南側梁は片端に降伏のマークがないが、これは ひずみ計測が行われていないため),2015年試験体は1~3 層の変形・損傷が卓越する部分崩壊形となった。続いてス ラブ筋の降伏状況を図6に示す。層間変形の顕著な3階床 の降伏状況を示す。図より、2014年試験体は Rr=0.5%で 梁縁から1.2mまでの鉄筋が降伏、Rr=1.0%でスラブ中央 付近までの鉄筋が降伏し、最上階を除き同様の傾向である。 2015年試験体は最大耐力が発揮された Rr=0.5%でスラブ 中央付近の鉄筋が降伏し、2-4階床も同様の傾向である。

3. 解析概要

3.1 架構のモデル化

図7のとおり、部材を柱梁芯で線材置換した立体架構としてモデル化する。剛域は文献³⁾を参考に、壁フェイス位置からD/4の長さ柱梁接合部側へ入り込んだ位置とする(Dは壁を含む柱梁せい)。なお、剛域端が柱梁フェイス位置よりも接合部側へと入る場合は、柱梁フェイス位置を剛域端とする。危険断面位置は文献³⁾で精度がよいとされているモデル化に従い、壁フェイス位置とする。

Tomohisa MUKAI *1, Yuma KAWAGOE *2 Hideyuki KINUGASA *2, Susumu KONO *3 Masaki MAEDA *4, Masanori TANI *5 Hidekazu WATANABE *1, Masanobu SAKASHITA *6

ただし 2015 年試験体は、図3 に示すように開口隅角部 に損傷が生じており、壁フェイスより接合部側に破壊領域 が生じた可能性がある。その損傷を考慮し、当該試験体の み剛域端を危険断面位置とした場合についても検討する。

3.2 部材のモデル化

各部材をひび割れと破壊を考慮した弾塑性ばねで、直交 梁は弾性ばねでモデル化する。柱は曲げ・せん断・軸ばね, 梁は曲げ・せん断ばねをそれぞれ危険断面位置および部材 可とう長さ中央に設置する。曲げばねとせん断ばねはひび 割れと終局点を考慮したトリリニアモデルとし、軸方向ば ねは圧縮側を弾性, 引張側は鉄筋降伏を考慮したバイリニ アモデルとする。各ばねの初期剛性は文献 4, ひび割れ耐 力・せん断終局耐力・剛性低下率は文献 5,曲げ終局耐力 は文献6に従い算出する。なお、梁の曲げ耐力算定時に考 慮するスラブ有効幅は、一般的に用いられる 1m の場合に 加え,図6に示すスラブ筋の降伏状況を参考に,全幅(2.75m) 有効とする場合も検討する。また2015年試験体では、図2 に示す最大耐力以降で架構の耐力低下が生じている。そこ で、本稿では壁付き梁の曲げばねの終局点以降の変形領域 に耐力低下を考慮したモデルを用いた解析を併せて行う。 その際の骨格曲線は耐力低下が考慮できるテトラリニアモ デルを用い、終局耐力を迎えた後の骨格曲線は、文献3を 参考に図8のように設定する。

3.3 載荷条件とモデル一覧

加力位置は図7に矢印で示す部分とし、実験同様水平力 が4層とR層で2:1となるよう設定する。解析はR層梁 芯位置の水平変位に基づく静的非線形増分解析とし,北(右 方向)に押し切る。また解析モデル一覧を表1に示す。

【謝辞、参考文献】その2にまとめて示す。

表1 解析モデル一覧

*1 建築研究所,*2 東京理科大学

*3 東京工業大学,*4 東北大学

*5 京都大学,*6 国土技術政策総合研究所

- *1 Building Research Institute, *2 Tokyo University of Science
- *3 Tokyo Institute of Technology, *4 Tohoku University

*5 Kyoto University, *6 National Institute for Land and Infrastructure Management